Икосаэдр

Располагается в Сакральная геометрия в квантовой реальности

Некоторые основные правила этих геометрических форм:

• Каждая грань геометрического тела будет иметь одинаковую форму:

октаэдр, тетраэдр и икосаэдр - равнобедренные треугольники,

◦ куб – квадраты,

◦ додекаэдр – пятиугольники.

• Каждое ребро каждой формы будет одинаковой длины.

• Все внутренние углы каждой формы равны между собой.

И самое важное:

• Каждая форма будет совершенно вписываться в сферу, и все вершины будут касаться сферы, не перекрывая друг друга.

Подобно двумерным случаям, включающим треугольник, квадрат, пятиугольник и шестиугольник внутри окружности, Платоновы Твердые Тела – это представления волновых форм в трех измерениях. Это положение нельзя недооценивать. Каждая вершина Платоновых Твердых Тел касается сферы в месте, где вибрации сводятся на нет, образуя узел. Следовательно, то, что мы видим, - это трехмерное геометрическое изображение вибрации/пульсации.

И студенты Бакминстера Фуллера и его протеже д-р Ганс Дженни придумали умные эксперименты, показавшие, что внутри вибрирующей/пульсирующей сферы будут формироваться Платоновы Твердые Тела. В эксперименте, проведенном студентами Фуллера, сферический воздушный шар помещался в чернила и пульсировал на “чистых” звуковых частотах, известных как диатонические звуковые отношения. На поверхности сферы образовывалось небольшое количество равноудаленных узлов и тонкие линии, соединяющие узлы друг с другом. Если будет четыре равно распределенных узла, вы увидите тетраэдр. Шесть равно распределенных узлов дадут октаэдр. Восемь равно распределенных узлов дадут куб. Двадцать равно распределенных узлов дадут додекаэдр, а двенадцать – икосаэдр. Прямые линии, которые мы видим на этих геометрических объектах, представляют напряжения, создающиеся “кратчайшим расстоянием между двумя точками” для каждого из узлов, поскольку они распределяются по всей поверхности сферы.

Д-р Ганс Дженни: образование Платоновых Твердых Тел в сферической вибрирующей жидкости

Д-р Ганс Дженни провел аналогичный эксперимент (небольшая часть которого приведена на рис 3.2) с каплей воды, содержащей слегка окрашенные частицы, что известно как “коллоидная взвесь”. Когда почти сферическая капля взвеси вибрировала на разных “диатонических” музыкальных частотах, внутри нее появлялись Платоновы Тела, окруженные эллиптическими кривыми линиями, соединяющими узлы. На вышеприведенном рисунке в центральной области четко видны два тетраэдра. Если бы капля была совершенной, а не сплющенной сферой, образования были бы видны еще яснее.

  • В сфере формируется дискообразная область материи
  • Следующее положение объясняет, почему во Вселенной, такой как Галактика, материя будет принимать форму “плоского” диска. Читателю крайне важно понять это положение: Самое высокое давление во всей Универсальной сфере будет
  • Каждая сфера в гнезде обладает разным уровнем эфирной плотности
  • Таким образом, между внешней границей известной сферы Вселенной и “центральным вибратором” слой за слоем будут формироваться сферические энергетические поля. “Стоячие волны” будут гнездиться, очень напоминая слои лука. Взаимодействия Э1 и
  • Вращающиеся в противоположных направлениях энергетические поля и динамика решетки
  • Мы помним, что в квантовой модели Джонсона атом в действительности состоит из энергетических полей, вращающихся в противоположных направлениях. Чтобы атом или молекула стали стабильными, геометрия должна сцепиться в сбалансированное образование.
  • Трудности сочетания идей д-ра Козырева с наукой
  •   Идеи Козырева не сразу и не легко усваивались традиционным научным сообществом, особенно на Западе, из-за того, что величины измеряемых им эффектов были чрезвычайно малы.  Например, дополнительные силы, вводимые в